14 min read

Living Review System

Automated continuous evidence monitoring and intelligent updates

Living Review System

EvidAI's Living Review System transforms static systematic reviews into dynamic, continuously-updated evidence resources. This capability addresses one of the most critical problems in evidence-based medicine.


The Evidence Decay Problem

The Shocking Reality

Time Since PublicationReviews with Outdated Conclusions
1 Year23%
2 Years47%
3 Years65%
5 Years80%+

Source: Shojania et al., Annals of Internal Medicine, 2007. This finding has been replicated multiple times and remains valid today.

Why This Matters

  • Clinical Guidelines: Physicians following outdated guidance
  • Drug Approvals: Regulatory decisions based on incomplete evidence
  • HTA Assessments: Coverage decisions using stale data
  • Research Waste: New studies unknowingly duplicating answered questions

The Traditional "Solution"

ApproachTimeCostOutcome
Commission new review12-18 months$150-300KStatic again immediately
Manual update searchesMonthly, 4-8 hours$50K/year (labor)Often forgotten
Rely on newer reviewsWhenever someone publishesFreeUnpredictable, may never happen

EvidAI's Solution: Automated Living Reviews

How It Works

            LIVING REVIEW LIFECYCLE
            
            ┌─────────────────────────────────────────────────────────┐
            │                                                         │
  ┌─────────┴─────────┐                                               │
  │   INITIAL REVIEW  │                                               │
  │   (One-time)      │                                               │
  └─────────┬─────────┘                                               │
            │                                                         │
            ▼                                                         │
  ┌─────────────────────────────────────────────────────────┐        │
  │              MONITORING ENGINE (Automated)               │        │
  │                                                         │        │
  │  ┌─────────────┐   ┌─────────────┐   ┌─────────────┐  │        │
  │  │   Daily     │   │   Weekly    │   │  Monthly    │  │        │
  │  │  PubMed     │   │  Embase     │   │  Cochrane   │  │        │
  │  │   RSS       │   │  Scopus     │   │  Registries │  │        │
  │  └──────┬──────┘   └──────┬──────┘   └──────┬──────┘  │        │
  │         └─────────────────┼─────────────────┘         │        │
  │                           │                           │        │
  └───────────────────────────┼───────────────────────────┘        │
                              │                                     │
                              ▼                                     │
                ┌─────────────────────────────┐                     │
                │    AI SCREENING             │                     │
                │    (4-model consensus)      │                     │
                └──────────────┬──────────────┘                     │
                               │                                     │
            ┌──────────────────┼──────────────────┐                 │
            ▼                  ▼                  ▼                 │
      ┌──────────┐      ┌──────────┐      ┌──────────┐            │
      │ RELEVANT │      │ UNCERTAIN│      │IRRELEVANT│            │
      │  Studies │      │  Studies │      │  Studies │            │
      └────┬─────┘      └────┬─────┘      └──────────┘            │
           │                 │                                     │
           │                 └──────► [Human Queue]                │
           │                                                       │
           ▼                                                       │
  ┌─────────────────────────────────────┐                         │
  │        IMPACT ASSESSMENT AI          │                         │
  │                                      │                         │
  │  Would this change conclusions?      │                         │
  │  ├── Effect direction?              │                         │
  │  ├── Statistical significance?       │                         │
  │  └── Confidence interval width?     │                         │
  │                                      │                         │
  └──────────────────┬───────────────────┘                         │
                     │                                             │
     ┌───────────────┼───────────────┐                             │
     ▼               ▼               ▼                             │
┌─────────┐   ┌───────────┐   ┌─────────┐                         │
│   LOW   │   │  MODERATE │   │  HIGH   │                         │
│ Impact  │   │   Impact  │   │ Impact  │                         │
└────┬────┘   └─────┬─────┘   └────┬────┘                         │
     │              │              │                               │
     ▼              ▼              ▼                               │
  Log for       Schedule      TRIGGER                              │
  quarterly     monthly       IMMEDIATE ──────────────────────────►│
  digest        update        UPDATE                               │
                                                                   │
            ┌──────────────────────────────────────────────────────┘
            │
            ▼
  ┌─────────────────────────────────────┐
  │         UPDATE EXECUTION            │
  │                                     │
  │  • Extract data from new studies    │
  │  • Re-run meta-analysis            │
  │  • Update GRADE assessments        │
  │  • Generate new forest plots        │
  │  • Update version number            │
  │  • Notify stakeholders              │
  │                                     │
  └─────────────────────────────────────┘

Monitoring Configuration

Database Coverage

EvidAI monitors 11 databases for new publications:

DatabaseMonitoring MethodFrequency
PubMed/MEDLINERSS + APIDaily
EmbaseAPI searchWeekly
Cochrane CENTRALAPI searchWeekly
Web of ScienceCitation alertsWeekly
ScopusAPI searchWeekly
CINAHLAPI searchBi-weekly
PsycINFOAPI searchBi-weekly
medRxivRSSDaily
bioRxivRSSDaily
ClinicalTrials.govRSSWeekly
PROSPERORSSWeekly

Configuring Your Living Review

LIVING REVIEW CONFIGURATION
═══════════════════════════════════════════════════════════════

Review: "SGLT2 Inhibitors in Heart Failure with Reduced EF"
Status: Active Living Review

MONITORING SETTINGS:
├── Frequency: Weekly (recommended for active fields)
├── Databases: All 11 enabled
├── Search strategy: Saved from original review
└── Date range: 2024-01-01 onwards

SCREENING SETTINGS:
├── AI confidence threshold: 85%
├── Auto-include threshold: 95%
├── Auto-exclude threshold: 95%
└── Human review queue: 85-95% confidence

IMPACT ASSESSMENT:
├── Trigger threshold: MODERATE or higher
├── Effect change sensitivity: 10% relative change
├── Significance change: Alert on any p-value threshold crossing
└── CI change sensitivity: 20% width change

NOTIFICATION SETTINGS:
├── Immediate (HIGH impact): All stakeholders
├── Weekly digest: Principal Investigator
├── Monthly summary: Full team
├── Quarterly report: Sponsor (if applicable)

VERSIONING:
├── Minor update (new studies, no conclusion change): v1.x
├── Major update (conclusion or significance change): vX.0
└── Auto-increment: Enabled

[Save Configuration] [Test with Historical Data] [Activate]

Impact Assessment Intelligence

How We Determine Impact

The Impact Assessment AI doesn't just count new studies—it predicts whether they would change your review's conclusions:

FactorAssessment Method
Sample SizeLarge trials weighted more heavily
Effect DirectionOpposite direction = immediate flag
Effect MagnitudeCompares to current pooled estimate
PrecisionNarrow CIs have more impact
Study QualityHigh-quality RCTs prioritized
Population MatchCloser to review population = higher impact

Impact Classification

LevelCriteriaAction
LOWNew data consistent with current conclusions; minimal CI changeLog only
MODERATEWould narrow CI >10% or shift point estimate slightlyMonthly update
HIGHWould change significance status OR direction of effectImmediate update
CRITICALSafety signal or major contradictionEmergency alert

Real-World Example

Living Review: SGLT2 Inhibitors in Heart Failure

LIVING REVIEW LOG: 12-Week Period
═══════════════════════════════════════════════════════════════

Initial State:
├── Version: v2.0.0
├── Studies Included: 8
├── Pooled HR: 0.73 [0.67-0.80]
├── Conclusion: "SGLT2i significantly reduce HF hospitalization"
└── GRADE Certainty: HIGH

Week 1-4:
├── Searches: 4 × 11 databases = 44 searches
├── New records screened: 847
├── Relevant after AI screening: 3
├── Impact assessment: LOW (post-hoc analyses of existing trials)
└── Action: Logged for quarterly review

Week 5:
├── Search date: February 4, 2025
├── New records screened: 211
├── Relevant after AI screening: 1
├── Study: "SUSTAIN-CHINA (n=868, Phase 3 RCT)"
├── AI-extracted effect: HR 0.68 [0.54-0.86]
├── Impact assessment: MODERATE
│   └── Reason: Would narrow CI by 8%, consistent direction
└── Action: Scheduled for monthly update

Week 8 (Monthly Update Executed):
├── Studies: 8 → 9
├── Pooled HR: 0.73 [0.67-0.80] → 0.72 [0.67-0.78]
├── Conclusion: Unchanged (more precise)
├── Version: v2.0.0 → v2.1.0
├── Notifications sent: 12 stakeholders
└── Report: Auto-generated, attached

Week 12: ⚠️ MAJOR UPDATE TRIGGERED
├── Search date: March 24, 2025
├── New study: "SOUL-CV (n=9,642, CV outcomes trial)"
├── AI-extracted effect: HR 0.63 [0.58-0.69]
├── Impact assessment: HIGH
│   ├── Reason 1: Largest trial to date (doubles sample size)
│   ├── Reason 2: CV mortality now reaches significance
│   └── Reason 3: Conclusion would strengthen substantially
├── Action: IMMEDIATE FULL UPDATE
├── Estimated completion: 72 hours
├── Notifications sent: 12 stakeholders + 3 admins + sponsor
└── Version: v2.1.0 → v3.0.0 (in progress)

═══════════════════════════════════════════════════════════════

Business Impact

Cost Comparison

ApproachYear 1Year 2Year 33-Year Total
Traditional (biennial update)$200K$0$200K$400K
Manual monitoring$150K + $50K/yr$50K$50K$300K
EvidAI Living Review$50K setup$25K/yr$25K/yr$100K
Savings with EvidAI---$200-300K

Time Comparison

MilestoneTraditionalEvidAI Living
Know new study exists0-6 months (luck)1-7 days
Screen for relevance1-2 weeksAutomatic
Assess impact2-4 weeksAutomatic
Update if needed6-12 monthsHours to days

Risk Reduction

The Real Value: A pharmaceutical company making $50M/month on a drug can't afford outdated evidence in their FDA submission. A 6-month delay waiting for a traditional update costs $300M in revenue. EvidAI's living reviews eliminate this risk entirely.


Regulatory Recognition

Living systematic reviews are increasingly recognized and required:

BodyPosition
CochraneActively developing living review methods
FDARWE guidance encourages continuous monitoring
EMAAdaptive pathways require ongoing evidence
NICEMoving toward living guidelines
WHOLiving guidelines for COVID demonstrated value

Getting Started

Activating Living Reviews

  1. Complete your initial review (or import existing)
  2. Configure monitoring settings (frequency, databases, thresholds)
  3. Set notification preferences (who, when, how)
  4. Activate monitoring (one click)
  5. Review and refine (adjust based on early results)

Best Practices

  • Start with monthly updates for new topics, move to quarterly once stable
  • Set conservative thresholds initially (HIGH only), then tune
  • Designate a reviewer for the human review queue
  • Plan for major updates even if infrequent

Support: Our customer success team can help configure optimal settings for your topic and use case. Contact support@EvidAI.ai for a configuration consultation.

Did this article help?
Still stuck?