Living Review System
EvidAI's Living Review System transforms static systematic reviews into dynamic, continuously-updated evidence resources. This capability addresses one of the most critical problems in evidence-based medicine.
The Evidence Decay Problem
The Shocking Reality
| Time Since Publication | Reviews with Outdated Conclusions |
|---|
| 1 Year | 23% |
| 2 Years | 47% |
| 3 Years | 65% |
| 5 Years | 80%+ |
Source: Shojania et al., Annals of Internal Medicine, 2007. This finding has been replicated multiple times and remains valid today.
Why This Matters
- Clinical Guidelines: Physicians following outdated guidance
- Drug Approvals: Regulatory decisions based on incomplete evidence
- HTA Assessments: Coverage decisions using stale data
- Research Waste: New studies unknowingly duplicating answered questions
The Traditional "Solution"
| Approach | Time | Cost | Outcome |
|---|
| Commission new review | 12-18 months | $150-300K | Static again immediately |
| Manual update searches | Monthly, 4-8 hours | $50K/year (labor) | Often forgotten |
| Rely on newer reviews | Whenever someone publishes | Free | Unpredictable, may never happen |
EvidAI's Solution: Automated Living Reviews
How It Works
LIVING REVIEW LIFECYCLE
┌─────────────────────────────────────────────────────────┐
│ │
┌─────────┴─────────┐ │
│ INITIAL REVIEW │ │
│ (One-time) │ │
└─────────┬─────────┘ │
│ │
▼ │
┌─────────────────────────────────────────────────────────┐ │
│ MONITORING ENGINE (Automated) │ │
│ │ │
│ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ │ │
│ │ Daily │ │ Weekly │ │ Monthly │ │ │
│ │ PubMed │ │ Embase │ │ Cochrane │ │ │
│ │ RSS │ │ Scopus │ │ Registries │ │ │
│ └──────┬──────┘ └──────┬──────┘ └──────┬──────┘ │ │
│ └─────────────────┼─────────────────┘ │ │
│ │ │ │
└───────────────────────────┼───────────────────────────┘ │
│ │
▼ │
┌─────────────────────────────┐ │
│ AI SCREENING │ │
│ (4-model consensus) │ │
└──────────────┬──────────────┘ │
│ │
┌──────────────────┼──────────────────┐ │
▼ ▼ ▼ │
┌──────────┐ ┌──────────┐ ┌──────────┐ │
│ RELEVANT │ │ UNCERTAIN│ │IRRELEVANT│ │
│ Studies │ │ Studies │ │ Studies │ │
└────┬─────┘ └────┬─────┘ └──────────┘ │
│ │ │
│ └──────► [Human Queue] │
│ │
▼ │
┌─────────────────────────────────────┐ │
│ IMPACT ASSESSMENT AI │ │
│ │ │
│ Would this change conclusions? │ │
│ ├── Effect direction? │ │
│ ├── Statistical significance? │ │
│ └── Confidence interval width? │ │
│ │ │
└──────────────────┬───────────────────┘ │
│ │
┌───────────────┼───────────────┐ │
▼ ▼ ▼ │
┌─────────┐ ┌───────────┐ ┌─────────┐ │
│ LOW │ │ MODERATE │ │ HIGH │ │
│ Impact │ │ Impact │ │ Impact │ │
└────┬────┘ └─────┬─────┘ └────┬────┘ │
│ │ │ │
▼ ▼ ▼ │
Log for Schedule TRIGGER │
quarterly monthly IMMEDIATE ──────────────────────────►│
digest update UPDATE │
│
┌──────────────────────────────────────────────────────┘
│
▼
┌─────────────────────────────────────┐
│ UPDATE EXECUTION │
│ │
│ • Extract data from new studies │
│ • Re-run meta-analysis │
│ • Update GRADE assessments │
│ • Generate new forest plots │
│ • Update version number │
│ • Notify stakeholders │
│ │
└─────────────────────────────────────┘
Monitoring Configuration
Database Coverage
EvidAI monitors 11 databases for new publications:
| Database | Monitoring Method | Frequency |
|---|
| PubMed/MEDLINE | RSS + API | Daily |
| Embase | API search | Weekly |
| Cochrane CENTRAL | API search | Weekly |
| Web of Science | Citation alerts | Weekly |
| Scopus | API search | Weekly |
| CINAHL | API search | Bi-weekly |
| PsycINFO | API search | Bi-weekly |
| medRxiv | RSS | Daily |
| bioRxiv | RSS | Daily |
| ClinicalTrials.gov | RSS | Weekly |
| PROSPERO | RSS | Weekly |
Configuring Your Living Review
LIVING REVIEW CONFIGURATION
═══════════════════════════════════════════════════════════════
Review: "SGLT2 Inhibitors in Heart Failure with Reduced EF"
Status: Active Living Review
MONITORING SETTINGS:
├── Frequency: Weekly (recommended for active fields)
├── Databases: All 11 enabled
├── Search strategy: Saved from original review
└── Date range: 2024-01-01 onwards
SCREENING SETTINGS:
├── AI confidence threshold: 85%
├── Auto-include threshold: 95%
├── Auto-exclude threshold: 95%
└── Human review queue: 85-95% confidence
IMPACT ASSESSMENT:
├── Trigger threshold: MODERATE or higher
├── Effect change sensitivity: 10% relative change
├── Significance change: Alert on any p-value threshold crossing
└── CI change sensitivity: 20% width change
NOTIFICATION SETTINGS:
├── Immediate (HIGH impact): All stakeholders
├── Weekly digest: Principal Investigator
├── Monthly summary: Full team
├── Quarterly report: Sponsor (if applicable)
VERSIONING:
├── Minor update (new studies, no conclusion change): v1.x
├── Major update (conclusion or significance change): vX.0
└── Auto-increment: Enabled
[Save Configuration] [Test with Historical Data] [Activate]
Impact Assessment Intelligence
How We Determine Impact
The Impact Assessment AI doesn't just count new studies—it predicts whether they would change your review's conclusions:
| Factor | Assessment Method |
|---|
| Sample Size | Large trials weighted more heavily |
| Effect Direction | Opposite direction = immediate flag |
| Effect Magnitude | Compares to current pooled estimate |
| Precision | Narrow CIs have more impact |
| Study Quality | High-quality RCTs prioritized |
| Population Match | Closer to review population = higher impact |
Impact Classification
| Level | Criteria | Action |
|---|
| LOW | New data consistent with current conclusions; minimal CI change | Log only |
| MODERATE | Would narrow CI >10% or shift point estimate slightly | Monthly update |
| HIGH | Would change significance status OR direction of effect | Immediate update |
| CRITICAL | Safety signal or major contradiction | Emergency alert |
Real-World Example
Living Review: SGLT2 Inhibitors in Heart Failure
LIVING REVIEW LOG: 12-Week Period
═══════════════════════════════════════════════════════════════
Initial State:
├── Version: v2.0.0
├── Studies Included: 8
├── Pooled HR: 0.73 [0.67-0.80]
├── Conclusion: "SGLT2i significantly reduce HF hospitalization"
└── GRADE Certainty: HIGH
Week 1-4:
├── Searches: 4 × 11 databases = 44 searches
├── New records screened: 847
├── Relevant after AI screening: 3
├── Impact assessment: LOW (post-hoc analyses of existing trials)
└── Action: Logged for quarterly review
Week 5:
├── Search date: February 4, 2025
├── New records screened: 211
├── Relevant after AI screening: 1
├── Study: "SUSTAIN-CHINA (n=868, Phase 3 RCT)"
├── AI-extracted effect: HR 0.68 [0.54-0.86]
├── Impact assessment: MODERATE
│ └── Reason: Would narrow CI by 8%, consistent direction
└── Action: Scheduled for monthly update
Week 8 (Monthly Update Executed):
├── Studies: 8 → 9
├── Pooled HR: 0.73 [0.67-0.80] → 0.72 [0.67-0.78]
├── Conclusion: Unchanged (more precise)
├── Version: v2.0.0 → v2.1.0
├── Notifications sent: 12 stakeholders
└── Report: Auto-generated, attached
Week 12: ⚠️ MAJOR UPDATE TRIGGERED
├── Search date: March 24, 2025
├── New study: "SOUL-CV (n=9,642, CV outcomes trial)"
├── AI-extracted effect: HR 0.63 [0.58-0.69]
├── Impact assessment: HIGH
│ ├── Reason 1: Largest trial to date (doubles sample size)
│ ├── Reason 2: CV mortality now reaches significance
│ └── Reason 3: Conclusion would strengthen substantially
├── Action: IMMEDIATE FULL UPDATE
├── Estimated completion: 72 hours
├── Notifications sent: 12 stakeholders + 3 admins + sponsor
└── Version: v2.1.0 → v3.0.0 (in progress)
═══════════════════════════════════════════════════════════════
Business Impact
Cost Comparison
| Approach | Year 1 | Year 2 | Year 3 | 3-Year Total |
|---|
| Traditional (biennial update) | $200K | $0 | $200K | $400K |
| Manual monitoring | $150K + $50K/yr | $50K | $50K | $300K |
| EvidAI Living Review | $50K setup | $25K/yr | $25K/yr | $100K |
| Savings with EvidAI | - | - | - | $200-300K |
Time Comparison
| Milestone | Traditional | EvidAI Living |
|---|
| Know new study exists | 0-6 months (luck) | 1-7 days |
| Screen for relevance | 1-2 weeks | Automatic |
| Assess impact | 2-4 weeks | Automatic |
| Update if needed | 6-12 months | Hours to days |
Risk Reduction
The Real Value: A pharmaceutical company making $50M/month on a drug can't afford outdated evidence in their FDA submission. A 6-month delay waiting for a traditional update costs $300M in revenue. EvidAI's living reviews eliminate this risk entirely.
Regulatory Recognition
Living systematic reviews are increasingly recognized and required:
| Body | Position |
|---|
| Cochrane | Actively developing living review methods |
| FDA | RWE guidance encourages continuous monitoring |
| EMA | Adaptive pathways require ongoing evidence |
| NICE | Moving toward living guidelines |
| WHO | Living guidelines for COVID demonstrated value |
Getting Started
Activating Living Reviews
- Complete your initial review (or import existing)
- Configure monitoring settings (frequency, databases, thresholds)
- Set notification preferences (who, when, how)
- Activate monitoring (one click)
- Review and refine (adjust based on early results)
Best Practices
- Start with monthly updates for new topics, move to quarterly once stable
- Set conservative thresholds initially (HIGH only), then tune
- Designate a reviewer for the human review queue
- Plan for major updates even if infrequent
Support: Our customer success team can help configure optimal settings for your topic and use case. Contact support@EvidAI.ai for a configuration consultation.